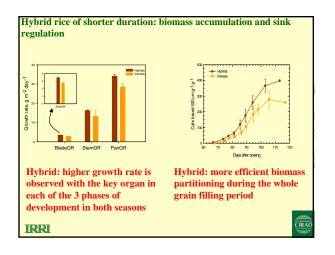
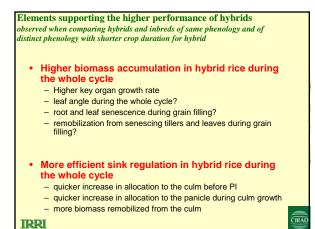

 Yield components 		-	arvest in	-		
Observations from distinct experiments:	Year/ Season		GY (t/ha)	ShDW m ⁻²	ш	THE
higher or similar	2007 DS	H (7)	11.03 a	2108 a	0.54 a	0.52 a
grain yield and	Transplanting	I (6)	9.48 b	1932 b	0.50 b	0.54 a
harvest index of hybrid	2006 DS	H (3)	8.45 a	1780 a	0.51 a	0.56 a
Significantly-low relation with shoot dry weight but	Staggered	I (3)	7.53 b	1634 a	0.45 b	0.55 a
higher values with hybrid	2006 DS	H (2)	8.49 a	1587 a	0.55 a	0.63 a
	AWD genotypes	I (3)	8.44 a	1611 a	0.52 b	0.62 a
	2005 DS	H (2)	7.16 a	1959 a	0.45 a	0.41 b
HI better related to grain ield than shoot dry matter	Broadcasting	I (2)	5.94 b	1820 a	0.42 a	0.55 a
	2004 WS	H (5)	5.93 a	1885 a	0.45 a	0.52 a
	Wet season	I (7)	5.35 b	1748 b	0.42 b	0.49 a

Gen	GY t ha ⁻¹	Pan no m ⁻²	FiGr no pan ⁻¹	Grain size	ShDW g m ⁻²	ні	Sink size no m ⁻²	Gr Fill rate
15	10.45	332	133	23.79	2276	0.54	60028	0.74
16	10.77	329	137	23.96	2251	0.55	59424	0.72
17	10.63	333	142	22.48	2015	0.52	65157	0.71
18	10.73	309	142	24.35	2013	0.52	65118	0.68
1	9.73	375	105	24.70	2113	0.51	46473	0.85
9	9.17	331	106	26.01	1802	0.46	48448	0.71
10	8.38	309	106	23.60	1854	0.50	46115	0.77
12	8.72	301	109	26.55	2040	0.47	41621	0.74
Aean-H	10.65 A	326 A	139 A	23.65 B	2139 A	0.53 A	62432 A	0.73 A
Aean-I	9.00 B	329 A	109 B	25.22 A	1952 B	0.49 B	45664 B	0.77 A

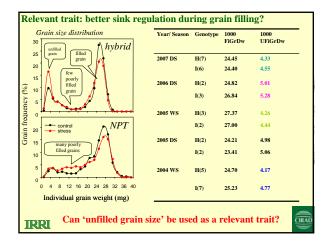


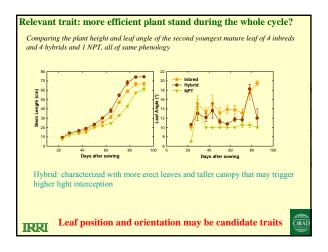



Genotype	GY	Biomass at PM	HI	PanNB	FiGrNB.	ToGrNB	1000 seed wt
	t ha-1	g m ⁻²		m ⁻²	pan-1	m-2	g
Hybrid							
H6	10.80	2093	0.54	310	145	62490	23.97
H12	10.76	2598	0.46	303	131	55241	27.13
H13	10.70	2149	0.52	290	134	48396	27.48
H14	11.18	1954	0.52	328	135	63142	25.11
Mean	10.86 a*	2205 a	0.51 a	308 b	136 a	57317 a	25.92 a
Inbred							
14	10.06	1904	0.52	338	124	57274	23.98
111	10.18	2243	0.44	406	106	61014	23.69
113	9.86	1905	0.51	369	121	59698	22.05
Mean LSD(0.05)	10.03b 0.22	2017 a 202	0.49 a 0.03	371 a 18.9	117 b 6.1	59329 a 4457	23.24 b 1.17
ybrid: l	<u> </u>	biomas vidual se					ilar sink : ld

Hybrid rice of shorter duration: yield components

Year/ Season		GY (t/ha)	ShDW m ⁻²	н	SSI	-
					(g cm g ⁻¹)	_
2007 DS	H (7)	11.03 a	2108 a	0.54 a	175 a	The difference in S
Transplanting	I (6)	9.48 b	1932 b	0.50 b	145 b	between plant type
2006 DS	H (3)	8.45 a	1780 a	0.51 a	150 a	is larger than that ir
Staggered	I (3)	7.53 b	1634 a	0.45 b	102 b	and with consistent
						significance
2006 DS	H (2)	8.49 a	1587 a	0.55 a	156 a	
AWD genotypes	I (3)	8.44 a	1611 a	0.52 b	133 b	SSI at maturity can
						used more acurately
2005 DS	H (2)	7.16 a	1959 a	0.45 a	114 a	than harvest index to
Braodcasting	I (2)	5.94 b	1820 a	0.42 a	93 b	discriminate plants i
2004 WS	H (5)	5.93 a	1885 a	0.45 a	140 a	their ability to partit dry matter efficient
Wet season	I (7)	5.35 b	1748 b	0.42 b	117b	dry matter efficienti

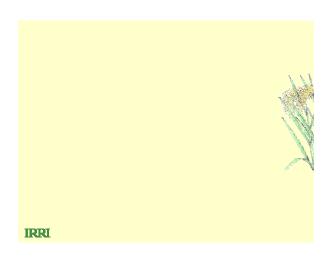




- The breeding strategies for higher yield potential could consider more direct traits refering to higher sink regulation and higher biomass accumulation. Such traits could be relevant to any phase of the crop cycle
- Higher sink size, as an integrated trait and a consequence of higher sink regulation, still need to be considered

IRRI

CIRAI



Possible candidates traits for increasing yield potential • Increasing the source: - Leaf angle and its dynamic during the whole cycle - Extended culm growth period vs. vegetative (Slafer et al)? - Extended grain filling period? - Delayed root senescence in order to delay leaf senescence? • Increasing sink regulation - Increased specific leaf area at early stage - Low sink strength index at flowering associated with higher reserve storage - High sink strength index at maturity associated with high remobilization - Low individual unfilled grain size

Crop response to seedling age at transplan Transplanting, hill spacing 20 x 20 cm Inbred1 in the main field, 34 days after sowing for all 3 situations Transplanted 7 days after – sowing	nting: leaf area growth
transplanted 14 days after sowing transplanted 21 days after sowing	
Is there any significative effective	ct on grain yield?

Dry Season			Wet Season	Wet Season			
Genotype	Seedling age, d	Yield, t ha-1	Genotype	Seedling age, d	Yield, t ha-		
Inbred1 Inbred1	7 14	6.99 a 6 34 a	Inbred1	7	5.32 a		
Inbred1	21	6.06 b	Inbred1	21	5.18 b		
Hybrid1	7	7.75 a	Hybrid1	7	6.62 a		
Hybrid1 Hybrid1	14 21	6.98 b 6.97 b	Hybrid1 Hybrid1	14 21	6.02 b 5.89 b		
tran	splanting 7	d was sign -day instea i plant type	ad of 21-d	ay old see			

IRRI

